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Quasistatic and wave approaches to description of the phenomenon of collision of solid 
bodies were developed at the end of the last century by Navier, St. Venant, and other classic 
scholars in the field of mechanics [1-4]. Let us recall that according to the quasistatic 
theory the forces developing upon collision are of a long-range character, and the colliding 
bodies are regarded as elastic springs, as a result of which the compressive force is a con- 
tinuous function of collision time. In the wave theory the finite propagation rate of com- 
pressive forces is considered together with their subsequent transformation at the boundaries 
of the colliding bodies. Therefore the space-time profile of stresses, being a superposition 
of all the wave disturbances, departs from smoothness significantly. 

Although the unity of the wave and quasistatic approaches has been demonstrated by a 
number of numerical studies of the collision process, a strict proof of such unity is lacking, 
mainly due to mathematical difficulties in precisely describing the collision process. Using 
the example of longitudinal collision of elastic bodies, we will perform below an approxi- 
mate analysis of the wave dynamics of the collision, based on linearization of the stress 
profiles in each circulation of a wave through the body collided with. Simple expressions 
are obtained for calculating maximum collision pressures, which agree satisfactorily with 
the expressions of quasistatic theory and corresponding empirical results obtained for the 
case where the mass of the striking body is 2-3 orders of magnitude greater than the mass 
of the body struck. 

i. We obtain the basic relationships of the quasistatic theory of collision with the 
example of action of a solid body (striker) of mass M on a cylindrical bar of length s with 
planar faces of section S, mounted on a rigid anvil. Considering the bar as an elastic 
spring, we denote by a the amount of bar compression. Then the compressive force F = -ka, 
where k is the mechanical rigidity of the bar, equal to ES/s (E = pc 2 is the modulus of longi- 
tudinal compression, p, c are the density and speed of sound in the material), satisfies the 
harmonic 

d , F + ~ F = O ,  F ( 0 ) = 0 ,  F ( ~ / 2 ~ ) = F ~ ,  o 2 = k / M ,  ( 1 . 1 )  

whence 

F = F m s i n  ~t. ( 1 . 2 )  

The maximum c o m p r e s s i v e  f o r c e  F m can be d e t e r m i n e d  from t h e  c o n d i t i o n  o f  e q u a l i t y  o f  
t h e  k i n e t i c  e n e r g y  o f  t h e  s t r i k e r  Mv~/2 (where  v0 i s  t h e  c o l l i s i o n  v e l o c i t y )  t o  t h e  p o t e n t i a l  
e n e r g y  of  ba r  c o m p r e s s i o n  F~/2k .  I n t r o d u c i n g  t h e  p r e s s u r e  upon c o l l i s i o n  p = F/S and t h e  
collision time, from the condition F(t c) = 0, we obtain 

p~ = (vo/S) (Mk) '/~ = po= -w2' t c =  ~ (M/k)  I/2 = ~/2,=,~, po '= pcvo ( 1 .3  ) 

(a  = pSs i s  t h e  r a t i o  o f  s t r i k e r  and t a r g e t  m a s s e s ) .  Note  t h a t  Eq. ( 1 . 3 )  i s  w r i t t e n  in  
t e rms  o f  b o t h  t h e  q u a s i s t a t i c  and t h e  wave a p p r o a c h  t o  t h e  c o l l i s i o n  p r o c e s s  ( i n  t e rms  
of  t he  speed  o f  sound c ) .  The n o t a t i o n  f o r  P0 c o i n c i d e s  w i t h  t h e  e x p r e s s i o n  f o r  p r e s s u r e  in  
t he  l o n g i t u d i n a l  c o m p r e s s i o n  wave p r o d u c e d  a t  t h e  b e g i n n i n g  o f  c o l l i s i o n .  I t  i s  o b v i o u s  
t h a t  i n t r o d u c t i o n  o f  t h e  f o r c e  F 0 = p0S in  i n i t i a l  c o n d i t i o n  ( 1 . 1 )  has  no e f f e c t  on Pm" 

2. B e f o r e  a t t e m p t i n g  t o  s o l v e t h e  wave p rob lem of  c o l l i s i o n ,  we w i l l  r e f i n e  t h e  c o n c e p t  
o f  an a b s o l u t e l y  r i g i d  s t r i k e r .  To do t h i s  we f i n d  t h e  r e f l e c t i o n  and t r a n s m i s s i o n  c o e f f i -  
c i e n t s  f o r  a l o n g i t u d i n a l  p l a n a r  wave o f  a r b i t r a r y  form on t h e  b o u n d a r y  (x = 0) o f  two b a r s  
o f  d i f f e r e n t  s e c t i o n s  S~ and S 2 w i t h  p a r a m e t e r s  pz,  E 1 and P2, E2. 

The g e n e r a l  s o l u t i o n  o f  t h e  wave e q u a t i o n  in  ba r  1 (x < 0) can  be w r i t t e n  in  t h e  form 

u, (=, t ) ,= f, (= - c~t)+ g~ ( = +  c~t) 
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(fl and gl are the waves incident on and reflected from the boundary). The wave entering 
bar 2 (x > 0) is described by an expression of form 

u2(x, t)= ~(x--  c2t). 

E q u a t i n g  t h e  d i s p l a c e m e n t s  o f  t h e  b a r  f a c e s  U~lx=0 = U2]x=0 and t h e  f o r c e s  a c t i n g  on 
e a c h  b a r ,  

S~E10~u~L=o = S2E2~u2L=o, 

we find (i - z~/zz)f1(-~) = (i + z2/zl)gz(~), where z i = PiciSi (i = i, 2) are the shock 
impedances of the bars, ~ = clt. Thus, 

~(z, t)=/~ (x - ~)+(~ - z2) (~ + z2)-V~ (-z - ~), 

i.e., the reflection coefficient ~=(z~ -- z2) (z~ + z~) -~ and the transmission coefficient ~ = 
J+~=2z~(z~+z~) -~. If the bar materials are identical (p~c~ = p2c 2) and Sz ~ $2, then ~=I 
and ~ = 2. In accordance with the analysis of [5], in this case bar 1 may be considered 
absolutely rigid relative to bar 2. 

We will consider longitudinal collision of an absolutely rigid body on an elastic bar 
with fixed end at the point x = ~. At the moment of collision (t = 0) the mass velocity 
at the free end of the bar (x = 0) is equal to v0, and the initial compressive stress P0 = 
0cv 0 > 0. Displacements of bar particles are described by a one-dimensional wave equation 
with d'Alembert's solution 

u (x, t)  = ~+ ( t  - x / c )  + ~_ (l + x ~ )  

(u+ a r e  d i s p l a c e m e n t s  p r o d u c e d  by  a l l  waves  moving  f r o m  t h e  s t r u c k  end ,  w h i l e  u_ a r e  f rom 
waves  a r r i v i n g  a t  t h e  s t r u c k  end o f  t h e  b a r ) .  

B e f o r e  t h e  t i m e  o f  a r r i v a l  o f  t h e  wave a t  t h e  f i x e d  end t h e  p r o b l e m  s o l u t i o n  i s  d e f i n e d  
by the single term 

u(x, t)=i~(t--x/c),  O<t~l /c .  ( 2 . 1 )  

W r i t i n g  t h e  c o n d i t i o n  a t  t h e  f r e e  end in  t h e  fo rm 

MO.u =MOor =--S~, o =--EO~u, u = O ~  ( 2 . 2 )  

(o, v are particle stress and velocity in the section x = 0) and using Eq. (2.1), we obtain 
an equation for the change in compressive stress with time: 

solution of which yields 

d,6 + 2 = ~ / T = 0 ,  ~ ( 0 ) = ~ ,  T=2l/c, 

o=poexp(--2at/T), O<t<T. ( 2 . 3 )  

resistance of the bar the striker velocity and pressure 
and a planar compression wave with decreasing stress pro- 

Thus, because of the dynamic 
in the bar decrease exponentially 
file begins to propagate along the bar. 

After reflection of the wave from the fixed end the solution takes the form 

u (x,  t) = Uo (t  - x/c)  + u~ (t + x/c), 0 <~ t <~ T. ( 2 . 4 )  

At t h e  p o i n t  x = s we h a v e  t h e  c o n d i t i o n  u ( s  t )  = 0 ,  wh ich  l e a d s  t o  t h e  e q u a l i t y  

u~ (~) = - u0 (~ - r ) ,  ~ = t + z/r 

The l a t t e r  c o n d i t i o n  i s  s a t i s f i e d  f o r  any  p o s i t i v e  g v a l u e ,  so  t h a t  s o l u t i o n  ( 2 . 4 )  may be 
written as 

u ( z ,  O =  u~(t  - x / c ) -  u~(t + x/c  - r ) .  

Hence i t  f o l l o w s ,  in  p a r t i c u l a r ,  t h a t  t h e  s t r e s s  a t  t h e  f i x e d  end 

a(l, t),= - -EO~u]~-z  = ~o(~)  + ~o(~ - -  T )  = 2a0 (~) 

i s  d o u b l e  t h e  s t r e s s  i n  t h e  f o r w a r d  wave .  

From t h e  b e g i n n i n g  o f  t h e  s e c o n d  c i r c u l a t i o n  o f  t h e  wave a l o n g  t h e  b a r  p a r t i c l e  d i s p l a c e -  
m e n t s  a r e  d e t e r m i n e d  by two waves  moving  f r o m  t h e  s t r u c k  end ,  and  a s i n g l e  wave p r o p a g a t i n g  
t o w a r d  t h a t  end :  

(z ,  t) = u 0 (t - ~ c )  - -  u0 (t + z / c  - T) + u~ (t - ~ c )  = Ul (t - -  z / c )  - -  Uo (t + x/c  - T).  ( 2 . 5 )  
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W i ~  t ~  a i d  o f  Eq. ( 2 . 5 )  we o b t a i n  an e x p r e s s i o n  f o r  s t r e s s e s  and p a r t i c l e  v e l o c i t i e s  
a t  t he  p o i n t  x = O: 

o=--E~ul,=o=o~(t)+~(t--T), 
v=atulx=o=(pc)-l(~l(t)--~o(t--T)), oo=poexp(--~at/T). ( 2 . 6 )  

We denote by On( t )  t he  t o t a l  compressive s t r e s s e s  from a l l  waves appear ing  a t  the  f r e e  
end o f  the  bar  a t  t imes nT, and by an_1( t  -- T ) ,  s t r e s s e s  from waves appear ing  a t  p r e v i o u s  moments 
(n - I)T and delayed by a time T due to circulation along the bar. Then, in analogy to Eq. 
(2.6) we have [i] 

o(t)=o.(t)+a,-i(t--T), v(t)=(pc)-~(~,(t)--o~-z(t--T)). ( 2 . 7 )  

Substitution of Eq. (2.7) in the striker braking law (2.2) permits establishment of a 
relationship between On(t) and On_l(t): 

~n(t)=on_~(t--T)--(4~/T)exp(--2~t/T) [ye• ( 2 . 8 )  

We f i n d  t h e  i n t e g r a t i o n  c o n s t a n t  C from t h e  c o n d i t i o n  t h a t  a t  t i m e s  nT t h e  c o m p r e s s i v e  
s t r e s s e s  a t  t h e  c o n t a c t  w i t h  t h e  s t r i k e r  i n c r e a s e s  by 2p0: 

o,(nT)+o,-l((n--i)T)=o~-r(nT)+o,-2((n--l)T)+2po. ( 2 . 9 )  

Using t h e  i n i t i a l  v a l u e  a 0 ( t )  g i v e n  by Eq. ( 2 . 6 ) ,  [1] found  t h e  f i r s t  s e v e r a l  v a l u e s  o f  
O n ( t ) .  Fo r  l a r g e r  n v a l u e s  t h e  e x p r e s s i o n s  f o r  O n ( t )  become c ~ b e r s o m e  and d i f f i c u l t  t o  
e v a l u a t e .  Also  p r e s e n t e d  t h e r e  were  r e s u l t s  o f  n ~ e r i c a l  a ( t )  c a l c u l a t i o n s  f o r  s e v e r a l  c o l l i -  
s i o n  cases. 

At the s~e time, by using Eqs. (2.8), (2.9) simple analytical expressions can be ob- 
tained for the stresses On(t) linearized for nT~t~(n+i)T . In this case with no loss of 
generality we can determine the complete pattern of the collision, for which it is sufficient 
t o  t a k e  a ~ l .  

R e p r e s e n t i n g  o 0 ( t )  in  d i m e n s i o n l e s s  form 

0 < T < I :  y o ( ~ ) = t - - 2 a r ,  z=t/T, F(T)=~(T)~0 ,  

we f i n d  t h e  f i r s t  s e v e r a l  v a l u e s  o f  Yn = On/P0: 

i < T < 2: y~(T)= yo(~)+ i + 6 a ( i - -  ~), 

2 ~ 3 :  y z ( ~ ) = y ~ ( ~ ) + l + i O ~ ( 2 - - z ) ,  

3 ~ Z ~ 4: y3 (T)=y2(T)+  t + t4~(3 -- ~), 

whence we obtain a general expression for yn(~) 

n~T~n+t:  y,(z)=g~-t(r)+l+2(2n+l)a(n--r) (2.10) 

and the compressive stress at the free face n ~ z~ n+ i 

y(z)=2n+t+(4/3)n(n+l)(2n+i).a--2(t+2n(n+i))~r. (2.11) 

C o n s i d e r i n g  t i m e s  �9 n o t  t o o  s m a l l ,  f o r  q u a l i t a t i v e  s t u d y  o f  Eq. ( 2 . 1 1 )  we can s e t  n = 
and define 
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TABLE i 

Parameter 

Ym 

TC 

Equation 

(2.tl) 
(2.13) 
(t.3) 
(241) 
(2.13) 
(i.3) 

t0-! 

3,800 
3,834 
3,t62 
3,640 
3,808 
4,967 

10-2 

t0,38 
10,38 
t0,00 
12,30 
12,22 
15,7t 

10 - 3  

30,79 
30,80 
3t,62 
38,64 
38,72 
49,67 

y(~)= t + 2~(1 - ( ~ / 3 ) ( 1  + 2~2)). (2 .12)  

With the aid of Eq. (2.12) we find the times at which the maximum stress is reached 
[d~y(~ m) = 0], the duration of the collision [Y(~c) = 0], and the maximum stress during col- 
lision ym(~m): 

y~ = i +(4/9) (3 -- a)~ ~ ~ + 0,9428a -~2 (2.13) 

As would be expected, Eqs. (1.3) and (2.13) for the quasistatic and wave theories of 
collision practically coincide for ~ ~ i. The e~ession for the maximum pressure Ym is close 
to the experimentally determined Ym = 1 + ~-i/2 ___ 

Figure 1 shows functions y(~), calculated with Eq. (2.11) for a = I0 -z, 10 -2 , and i0 -s 
(a-c). It is evident that for integral T the stress changes discontinuously. With decrease 
in ~ the function y(T) approaches ever more closely the smooth curve specified by quasistatic 
theory (y ~ sinT). 

Table 1 presents results of calculations of several collision parameters using the wave 
theory of Eq. (2.11), the approximate relationships of Eq. (2.13), and the quasistatic theory 
of Eq. (1.3). 

In accordance with Eq. (2.7) the functions yn(T) can be used to define the stresses in 
any other section of the bar. Since the maximum stress at its fixed end Ymax is equal to 
double the maximum value yn(Tmax), by writing Eq. (2.10) in the form 

y ~ ( x ) = n +  i + a ( n ( n +  1) ( 4 n + 5 ) / 3 - - 2 ( n +  t)2T) ( 2 . 1 4 )  

and taking n = T, we find 

whence 

Y~ ( ' 0 =  ('~ + t) (t -- (az/3) (2~ + t) ), 

xm.. =(I12~ + 1112) u2 __ 112 -~ (2a)-i12 _~ ~m, 

y~ = 2y. (~==) ~- I + (213) (2~) u2 _~ y~, 

�9 . = ((24/~ + i) I/2 -- i)14 ~ (312~) 112 -- ~c 
(2 .15)  

(with approximations for a ~ i).. Table 2 presents calculated values of collision parameters 
on the fixed bar end. 

Comparing the various calculation results in Tables 1 and 2, we note that the collision 
time at the free end T c is greater than at the fixed end T,, by approximately a semiperiod 
of the wave circulating along the bar. In correspondence with the law of conservation of 
momentum, the maximum compressive stress at the fixed end Ymax is greater than at the free 
end Ym, with the difference becoming insignificant as a + 0. 

We will now consider the change in striker velocity. An expression for v(t) can be found 
from Eqs. (2.7), (2.10), although it will contain significant uncertainty due to accumulation 
of errors resulting from subtracting small quantities. Therefore, having substituted Eq. 
(2.12) into the equation of motion (2.2) and integrating the latter with the condition v(0) = 
v0, we obtain 

V(~) = v/vo = 1 - 2 ~ ( t  + (t  - -  ~ /3 )~  - - ~ 3 / 3 ) .  

At the moment when maximum stress is reached, the velocity 

V(~) = I/6 + 5=19 -- (2a(i -- a/3) )i<2 

is close to zero, and at the end of the collision 

V(Tc)= --i/2+ a--(2~(3--a))u2< O. 

381 



TABLE 2 

Parameter Equation lo-Z io-~ io-~ 

(2.i4) 4,000 10,40 30,82 
Ymaz (2.i5) 4,056 i0,45 30,82 

(2.i4) 3,375 .1i,65 38,32 
"~* (2.t5) 3,63i i2,00 38,48 

For change in ~ from 5-10 -2 to 5.10 -4 the velocity reestablishment coefficient for the 
collision ~ = -V(~c) decreases from 0.993 to 0.554, i.e., within the limits of values typical 
of laboratory pile driver collision experiments [2, 4]. 

We will note that the results of the g calculations should not be overrated, since 
they were obtained, first, within the framework of a linearized model of wave disturbances, 
and second, under conditions difficult to obtain in practice (plane-parallel approach of bar 
and striker faces, absence of wave dispersion, etc.). Moreover, the assumption of an ab- 
solutely rigid striker eliminates dependence of E on the material of the colliding bodies. 

Thus, the above analysis of wave and quasistatic descriptions of the process of longi- 
tudinal collision of elastic bodies has shown that at small ratios of bar/striker mass both 
approaches yield similar results as regards maximum stresses and collision times, which 
agree well with data from the literature. The values found for the velocity reestablishment 
coefficient upon collision do not contradict experimental values. 
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NUMERICAL MODELING OF PETROLEUM HEATING AND FILTRATION IN A PLATE 

UNDER THE ACTION OF HIGH-FREQUENCY ELECTROMAGNETIC RADIATION 

A. A. Kislitsyn UDC 532.546:536.421 

The use of high-frequency electromagnetic radiation is a promising method for intensi- 
fying production of high viscosity petroleum. Because of its deep penetration and consequent 
volume heat liberation, electromagnetic radiation enables a much higher and more uniform heat- 
ing rate and a higher efficiency than the traditional thermal methods of heated vapor or hot 
liquid. However, realization of such capabilities requires detailed study of the heat-mass 
transport processes which occur, in order to discover optimal operating regimes. Estimates 
of penetration depth, temperature distribution, and filtration rate in one-dimensional models 
were made in [1-4]. A two-dimensional plate model was studied in [5], but without considera- 
tion of petroleum filtration (plate heating with closed well). At the same time it is pos- 
sible (and field tests have been carried out [6]) to heat a plate electromagnetically while 
simultaneously extracting oil, to model which consideration of both heat transport and pe- 
troleum filtration in the porous plate are obviously necessary. Determination of optimum 
parameters in such a regime is the goal of the present study. 

Model and Equations. Numerical studies were performed with a two-dimensional axisym- 
metric model, a diagram of which is shown in Fig. i. The petroleum stratum is contained 

Tyumen'. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 97- 
103, May-June, 1993. Original article submitted November 4, 1991; revision submitted June 
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